

JDEM-Omega Overview

Neil Gehrels, WFIRST Project Scientist February 3, 2011

JDEM-Omega Science

- JDEM-Omega is a space mission to determine the nature of the dark energy that is driving the current accelerated expansion of the universe
- Profound implications of Dark Energy study on understanding the universe:
 - Universe density (DE is 74% of the mass-energy density)
 - Existence of cosmological constant
 - Signal of new gravitational physics
 - Relation to the accelerated expansion during inflation
 - Relation to dark matter & neutrino mass
 - Connections to superstring theories & extra dimensions
 - Fate of the universe

JDEM History & Timeline

1998-99: Discovery via SN la that expansion of space is accelerating

2003: Quarks to Cosmos (Turner) study highlights importance of understanding DE

and endorses a space-based mission

2005-6: Multi-agency IWG and DETF panels recommended joint NASA/DOE JDEM

mission

2007: NRC BEPAC committee commissioned by NASA & DOE reviews ADEPT,

DESTINY & SNAP and recommends JDEM as first Beyond Einstein mission to

fly

2008: JDEM formulated as a strategic agency-led mission

2008: Figure of Merit Science Working Group

2008: Science Coordination Group (SCG) determined mission requirements

2009: JDEM-DECS & JDEM-Omega presented to Astro2010

2010: Interim Science Working Group (ISWG) studied low-cost Probe

implementations

Measurement Techniques

 Three most promising techniques each provide different physical observables and unique information:

- Baryon Acoustic Oscillation (BAO)
 - D_A(z), H(z) direct measure
 - Emission line galaxies positioned in 3D using strong $H\alpha$ line
 - · Spectroscopic redshift survey in NIR
 - · Slitless spectroscopic redshifts

- D_A(z), growth of structure
- Precision shape measurement of galaxy shapes
- Photo-z redshifts

- D_L(z)
- Type la supernovae detected into NIR
- Color and lightcurve parameters for standard candles
- Clean, uniform measurements with low systematics possible grant of the control of the control

- Not included in JDEM-Omega RFI response
- Distortions in Hubble flow due to cosmic structure
- Galaxy redshifts from BAO survey can give growth of structure info

Advantage of Space

- Precision measurements of dark energy probes are necessarily systematics limited
- Space provides
 - broadband NIR coverage
 - no blur from atmospheric scintillations
 - accessibility of low background sky regions
 - stable systematics control at L2
 - full sky available over 6 months
 - precise repetition of measurements
- JDEM-Omega focuses on space-unique capabilities that are complementary with the ground

Ancillary Science

- Large area BAO and WL surveys will be a legacy of JDEM-Omega
- ~100 million galaxies will be mapped in 3D
- Large NIR sky survey will be a boon for ancillary science
 - large-scale structure
 - galaxy clusters
 - high redshift AGN
 - galaxy evolution/structure/formation
 - stellar populations
 - star formation history
 - solar system objects

JDEM-Omega NIR Surveys

NIR Imaging Surveys

NIR Redshift Surveys

JDEM-Omega provides a factor of 100 improvement in IR surveys

Technologies & Readiness

- Enabling technologies
 - Large format HgCdTe detectors
 - Wide-field broad-band diffraction-limited telescopes
 - High-speed processors with large data storage
- Diffraction-limited sensitive wide-field sky coverage in NIR available for first time
- All JDEM-Omega technologies are high Technology Readiness Level (TRL) and ready-to-go
 - Heritage from HST, JWST
- JDEM-Omega can be built today

JWST HgCdTe array

JDEM-Omega Mission/Science Design Drivers

- Developed in an attempt to reduce cost from IDECS concept while still enabling 3 DE techniques
 - All NIR (focus on space-unique capabilities), reduced imager pixel scale to 0.18"/pixel
- 5 year mission, fully redundant spacecraft
- L2 orbit (minimal stray light, thermally stable)
- x10 improvement in determining cosmic equation of state
- x100 improvement in determining cosmic growth of structure (goal)
- BAO and SNe techniques are required while WL was made a goal due to uncertainty in capability of H2RG for shape measurements
 - BAO: ≥20,000deg², 0.7<z<2.0, ≥100m galaxy redshifts
 - SNe: \geq 1,500 SNe, 0.2<z<1.3, \geq 8 deg²-yr field monitoring
 - WL: ≥10,000deg², >30 galaxies/arcmin², 1b galaxy images

Omega Payload Optical Block Diagram

Omega Payload Fields of View (Looking Into Telescope)

Payload Central Line of Sight Field of Regard

Omega Capability for Microlensing

Looking down on the ecliptic plane, ~40 day seasons available to view the bulge

Omega Field of Regard and its Motion 🔯

LOS 120° off Sun

Observable Sky Band

LOS 120° off Sun

LOS 80° off Sun

<Views looking normal to the ecliptic plane>

Orbital motion covers full sky twice/year; SNe fields at ecliptic poles always visible

Instantaneous FOR is a 360° band with a width of 40° driven by Sun angles

GB

Sun Sun

Galactic Bulge lies within the FOR for two 40-day seasons each year

Omega Observatory Layout

Omega Payload Layout

Omega Science Returns

Observing Strategy Return

WL/BAO combined 3,300 deg²/yr

• BAO only 6,900 deg²/yr

• SNe >1,500 SNe/yr

- Strawman Observing Plans
 - 3 years WL/BAO combined, 1 year BAO only and 1 year SNe
 - 9,900 deg² WL
 - 16,800 deg² BAO
 - 1,500 SNe
 - 2 years WL/BAO combined, 2 years BAO only and 1 year SNe
 - 6,600 deg² WL
 - 20,400 deg² BAO
 - 1,500 SNe

Basis for Estimates of BAO and WL/BAO Sky Coverage Rates Shown In Omega RFI#2

BAO-only:

- Observing Efficiency: 75%
- Integration Time Required: 1800s of SpC time
- Active SpC Area: 0.528 deg²

WL/BAO:

- Observing Efficiency: 75%
- Integration Time Required: 1800s of ImC time
- Active ImC Area: 0.25 deg²
- BAO and WL/BAO Coverages/Yr
 - BAO: 365 d/yr x 86400 s/d x 0.75 / 1800 s x 0.528 deg² = \sim 6900 deg²/yr
 - WL/BAO: as above but with 0.25 deg² active area = \sim 3300 deg²/yr
- The impact of integration time and filter variations over BAO ImC/SpC maps needs to be assessed in simulations; Mapping efficiencies and integration times are critical to coverage and need updating.

WL(/BAO) Smooth Filled Imaging and Rough Filled Spectroscopy **Animation**

Details on Mapping Rqts in Backup ...

Omega's Capability to Deliver the Decadal Survey's Strawman 5 Yr Mission

Technique		Units	Omega	Units	Omega Time Alloc	Notes
	Allocation	_	Capability		(yrs)	
WL	4000	deg^2	3300	deg^2/yr	1.21	Part of "2+" years allocated to Cosmic Acceleration; Assumes
				WL/BAO		Omega depth and integration times; Smooth Filled Survey.
			6900	deg^2/yr		Part of "2+" years allocated to Cosmic Acceleration; Assumes
				BAO-only	0.58	Omega depth and integration times; Rough Filled Survey for BAO-
BAO	8000	deg^2			0.56	only; Assumes 4K of BAO delivered during WL 4K survey, so time
BAU	8000	deg^z				shown here is for 4K using BAO-only speed.
			3300	deg^2/yr	11 211	Time already covered by the 1.21 year WL/BAO survey.
				WL/BAO		
SNe	~0.5	yr			0.5	The DS suggests interleaving SNe observations with the Weak
						Lensing/galaxy survey to monitor high-redshift SNe (does "high-
						redshift" mean out to z=0.8?); Note that if Omega μL-Exo
						observations are made in two 50-day seasons each year for 5 years
						and are not interrupted, the max SNe season is only ~132 days, a
						serious efficiency impact.
μL-Exo	100	days/yr	100	days/yr	1.37	100 days/yr required for each of the 5 years; Not clear if the 100-
				(see		day campaign each year can be split into two 50-day seasons, or
				notes)		what the impact would be of partial daily interruptions; Omega
						can provide 80 days/yr, in two 40-day seasons 6 months apart, but
						this can be increased to two 50-day seasons with a relatively
						minor change to Omega's solar elevation requirements.
Galactic	0.5	yr	0.5	yr	0.5	8
Plane		"		"		
Guest	1	yr	1	yr	1	
Observer	_	,.	_	,.	_	
					F.45	
Total					5.16	

Sample of a Possible Omega Implementation of the DS 5-Year Strawman Allocations

Techniques Grouped by Year

SNe is acquired for seven 132 contiguous-day seasons, getting 1/5th of each day; No additional SNe time is allocated to compensate for the μ L-Exo interruptions; Order of WL/BAO, BAO, and Galactic Plane Surveys is arbitrary.

DETF Figure of Merit

The DETF figure of merit is defined as the reciprocal of the area of the error ellipse in the w_0 – w_a plane that encloses the 95% C.L. contour. (We show in the Technical Appendix that the area enclosed in the w_0 – w_a plane is the same as the area enclosed in the w_p – w_a plane.)

$$w = w_o + w_a (1+a)$$

where:

a = 1 / (1+z) scale factor of universe w = pressure / density

JDEM FoM

- Key dark energy FoMs defined by DETF and FoMSWG committees
 - DETF FoM measures dark energy equation of state
 - Gamma FoM measures growth of structure
- DETF FoM grows as techniques are added

Backup Slides

Omega BAO/WL Fields of Regard

Observatory can observe either the northern or southern sky

Roll about +X constrained to +/- 10°

No constraint on yaw about +Z axis

Payload Central Line of Sight Field of Regard

Omega SNe Field of Regard

Observatory observes a 10° radius circle about either the northern or southern pole

Pointing Requirements

Pointing Requirements

- Coarse Pointing Accuracy: 3 arcsecs RMS/axis
- Offset Pointing Accuracy (for small dithers): 25 milliarcsecs
 RMS/axis
- Pointing Stability (Jitter): 40 milliarcsecs RMS/axis
- Pointing Knowledge: 4 milliarcsecs RMS/axis

Basis for Estimates of SNe-la Characterization Rates In Omega RFI#2

- Deg²-Years of SNe Monitoring (5 yrs): 8.3 (0.25 * 7 * 0.95 * 5)
 - Field Active Area: 0.25 deg²
 - Fields Monitored on 5-day Cadence for 5 years: 7 (1.75 deg² total)
 - (set by 4800s/4800s Imaging / Spectroscopy time, 20% SNe time per day, and 80% SNe observing efficiency)
 - Area loss due to non-square: 1-(6.66/7) = 5% (6 fields square, 2/3 of 7th)
- Basis for 4800s Imaging and 4800s Spectroscopy Time:
 - ImC S/N≥25-30 at peak at z=1.3; Prism S/N≥3 per 10A at 0.58µm (rest)
 - 5 filters (0.4-1.7μm) and an R-75 prism on each field;
 - z-goal 0.2-1.3 (Spec time good to $z\sim0.9$; image time realloc gets to $z\sim1.1$)
- SNe Return: (using Dahlen et al 2008)
 - For a z-range of 0.2-1.3, 8.3 deg²-years will detect ~1500 SNe-la;
 - Per above, z-range likely only 0.2-1.1 for time allocated and fields viewed;
 - No layering in Omega to create low, mid, high z fields to balance yields.

Some Issues that Impact Delivery of the DS Strawman

- During BAO mapping, does DS require Smooth-Filled imaging?
- What is the impact on the BAO Science Catalog of variations in depth and dispersions across the area covered?
- Ratio of WL and BAO integration times will be key to WL/BAO survey, and Omega integration times need updating;
- Mapping Efficiencies need updating, with settling times being a key consideration;
- Two 50-day µL-Exo seasons per year for 5 years will limit SNe seasons to no more than 132 days, and to some extent will notch maps created for other Science techniques;
- Change in z-range for DS SNe (DS z=0.8 vs Omega z=1.2)
 will impact field monitoring coverage/depth trade.

Omega Ops Concept Considerations for Delivering the DS Strawman 5 Yr Mission

Technique	Field Location Thoughts for Decadal Strawman	Interruption	Constraints and Other Notes
_		Tolerance	
WL(/BAO)	A Skull Cap centered on the South Ecliptic Pole would provide	Tolerated daily	There are many possibilities, but let's assume
Survey	LSST field overlap for Ph-zs and low-hanging low-zodi fruit.	if needed	that we stay with the Omega allocation of 1/5th
	The Cap can, less µL-Exo interruptions, be 360° after 6 months		of each WL/BAO day to SNe. See SNe notes for
	or 1 year; Either WL/BAO or BAO-only could be done first.		impact of μL-Exo twice-yearly interruptions.
BAO-only	Area adjacent to the WL/BAO skull cap would be logical,	Tolerated daily	Ditto to the above for the BAO-only
Survey	perhaps a ring at lower latitudes; Either WL/BAO or BAO-only	if needed	observations.
SNe	7 fields, 0.25 deg^2 each, was the Omega baseline, based on	Tolerated but	Cannot interleave within µL-Exo surveys, and
Survey	1/5 of each days wall clock time and a 5-day observing	complete field	since μL-Exo surveys are required twice a year,
	cadence; a South Pole field would make sense given the WL	monitoring	SNe seasons are limited to 132 days (see
	and BAO survey locations; ~square field pattern allows 90-day	every 5 days	below); Trade on how much time to allocate to
	inertial holds with continuous monitoring; not reoptimized		SNe on a given day, up to 100%.
	for DS z=0.8 max guideline.		
μL-Exo	The field location is the Galactic Bulge.	Interruptions	If the μL-Exo survey is executed twice a year for
Survey		not allowed	50 days for all 5 years, then the longest
			contiguous SNe survey that can be executed is
			~132 days.
Galactic	80°-100° of the Galactic Plane is in the FOR each day, in two 40-	TBD	TBD
Plane	50 degree segments centered 180 degrees apart (100° if μL-		
Survey	Exo FOR extension). Other than that, TBD.		
Guest	TBD	TBD	TBD
Observer			
Surveys			

BAO-Only Mapping Efficiency Sample Estimate Reference

Science Mapping or Monitoring Efficiency Loss Considerations	Hours Lost/Yr		Efficiency Factor	Notes
No Science Ops Possible	181		0.979	e.g. Safehold, Station Keeping, Momentum Unloads, Comm Interruptions, Major Slews to Field Areas (and subsequent thermal/dynamic settling), etc.
Science Ops Possible but FOR Fixed or Limited	104		0.988	e.g. Comm if no gimballed antenna, Calibration time, other?
Repeated Losses Between Exposures			0.841	
Integration Time btwn Slews/Settles		225		A sample value for Omega BAO-only exposures.
Slew Time	-	25		Will vary with the size of the slew, from dithers to a degree or so, and the precsion of the pointing req'd.
Settle Time		15		Will vary with precision of the settle that is req'd.
Reset(s) Time		2.6		2.6s accounts for two frames.
Efficiency of Overlapping of Exposures to Deal with SCA gaps			1	This factor is not considered in this rollup, so set to 1.
Efficiency of Overlapping of Exposures to Deal with Field-to-Field gaps			1	This factor is not considered in this rollup, so set to 1.
Science Mapping Efficiency Rollup			0.814	Sample for above assumptions

WL(/BAO) Smooth Filled Imaging Survey Overview: 3300 deg^2/yr

- WL needs 600s Imaging w/4 random dithers in each of 3 filters; no gaps allowed, so each filter can be at a different roll angle, as needed for the BAO survey;
- BAO needs 1800 s of spectroscopy split roughly evenly between 4 different dispersion directions (2 nearly opposed), along with roughly 1/4- 1/2 that time in imaging in at least one NIR filter (two if Photo-zs for LSST are considered);

BAO-Only (+LSST Ph-zs) Rough Filled ImC/SpC Survey Overview: 6900 deg^2/yr

- BAO needs 1800 s of spectroscopy split ~evenly between 4 different dispersion directions (2 nearly opposed), along with roughly 4 mat time in imaging in at least one NIR filter;
- LSST Projection ents are uncertain, but maps in two NIR filters will be read:
- One of work as the minimize ImC SCA gaps.

34

Omega SNe-la Field Monitoring Overview

- 7 fields, 0.25 deg^2 each, are monitored on a 5-day cadence;
- 2x2 or 3x3 (tbd) precise dithers are used for each observation (not shown in animation);
- Each of 6 filter wheel settings (5 filters and one prism) is used once every 5 days;
- Field revisits are inertially held for ~90 days

